Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
J Virol Methods ; 326: 114914, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458353

RESUMO

Polioviruses (PV), the main causative agent of acute flaccid paralysis (AFP), are positive-sense single-stranded RNA viruses of the family Picornaviridae. As we approach polio eradication, accurate and timely detection of poliovirus in stool from AFP cases becomes vital to success for the eradication efforts. Direct detection of PV from clinical diagnostic samples using nucleic acid (NA) extraction and real-time reverse transcriptase polymerase chain reaction (rRT-PCR) instead of the current standard method of virus isolation in culture, eliminates the long turn-around time to diagnosis and the need for high viral titer amplification in laboratories. An essential component of direct detection of PV from AFP surveillance samples is the efficient extraction of NA. Potential supply chain issues and lack of vendor presence in certain areas of the world necessitates the validation of multiple NA extraction methods. Using retrospective PV-positive surveillance samples (n=104), two extraction kits were compared to the previously validated Zymo Research Quick-RNA™ Viral Kit. The Roche High Pure Viral RNA Kit, a column-based manual extraction method, and the MagMaX™ Pathogen RNA/DNA kit used in the automated Kingfisher Flex system were both non-inferior to the Zymo kit, with similar rates of PV detection in pivotal rRT-PCR assays, such as pan-poliovirus (PanPV), poliovirus serotype 2 (PV2), and wild poliovirus serotype 1 (WPV1). These important assays allow the identification and differentiation of PV genotypes and serotypes and are fundamental to the GPLN program. Validation of two additional kits provides feasible alternatives to the current piloted method of NA extraction for poliovirus rRT-PCR assays.


Assuntos
Enterovirus , Poliomielite , Poliovirus , Humanos , Poliovirus/genética , Estudos Retrospectivos , alfa-Fetoproteínas , Poliomielite/diagnóstico , Enterovirus/genética , RNA Viral/genética
2.
Front Public Health ; 11: 1254976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035280

RESUMO

Background: The National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) has amassed a vast reservoir of genetic data since its inception in 2007. These public data hold immense potential for supporting pathogen surveillance and control. However, the lack of standardized metadata and inconsistent submission practices in SRA may impede the data's utility in public health. Methods: To address this issue, we introduce the Search-based Geographic Metadata Curation (SGMC) pipeline. SGMC utilized Python and web scraping to extract geographic data of sequencing institutions from NCBI SRA in the Cloud and its website. It then harnessed ChatGPT to refine the sequencing institution and location assignments. To illustrate the pipeline's utility, we examined the geographic distribution of the sequencing institutions and their countries relevant to polio eradication and categorized them. Results: SGMC successfully identified 7,649 sequencing institutions and their global locations from a random selection of 2,321,044 SRA accessions. These institutions were distributed across 97 countries, with strong representation in the United States, the United Kingdom and China. However, there was a lack of data from African, Central Asian, and Central American countries, indicating potential disparities in sequencing capabilities. Comparison with manually curated data for U.S. institutions reveals SGMC's accuracy rates of 94.8% for institutions, 93.1% for countries, and 74.5% for geographic coordinates. Conclusion: SGMC may represent a novel approach using a generative AI model to enhance geographic data (country and institution assignments) for large numbers of samples within SRA datasets. This information can be utilized to bolster public health endeavors.


Assuntos
Metadados , Saúde Pública , Sequenciamento de Nucleotídeos em Larga Escala , China , Reino Unido
3.
Lancet Infect Dis ; 23(9): 1062-1071, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37178706

RESUMO

BACKGROUND: Novel oral poliovirus vaccine type 2 (nOPV2) was developed by modifying the Sabin strain to increase genetic stability and reduce risk of seeding new circulating vaccine-derived poliovirus type 2 outbreaks. Bivalent oral poliovirus vaccine (bOPV; containing Sabin types 1 and 3) is the vaccine of choice for type 1 and type 3 outbreak responses. We aimed to assess immunological interference between nOPV2 and bOPV when administered concomitantly. METHODS: We conducted an open-label, non-inferiority, randomised, controlled trial at two clinical trial sites in Dhaka, Bangladesh. Healthy infants aged 6 weeks were randomly assigned (1:1:1) using block randomisation, stratified by site, to receive nOPV2 only, nOPV2 plus bOPV, or bOPV only, at the ages of 6 weeks, 10 weeks, and 14 weeks. Eligibility criteria included singleton and full term (≥37 weeks' gestation) birth and parents intending to remain in the study area for the duration of study follow-up activities. Poliovirus neutralising antibody titres were measured at the ages of 6 weeks, 10 weeks, 14 weeks, and 18 weeks. The primary outcome was cumulative immune response for all three poliovirus types at the age of 14 weeks (after two doses) and was assessed in the modified intention-to-treat population, which was restricted to participants with adequate blood specimens from all study visits. Safety was assessed in all participants who received at least one dose of study product. A non-inferiority margin of 10% was used to compare single and concomitant administration. This trial is registered with ClinicalTrials.gov, NCT04579510. FINDINGS: Between Feb 8 and Sept 26, 2021, 736 participants (244 in the nOPV2 only group, 246 in the nOPV2 plus bOPV group, and 246 in the bOPV only group) were enrolled and included in the modified intention-to-treat analysis. After two doses, 209 (86%; 95% CI 81-90) participants in the nOPV2 only group and 159 (65%; 58-70) participants in the nOPV2 plus bOPV group had a type 2 poliovirus immune response; 227 (92%; 88-95) participants in the nOPV2 plus bOPV group and 229 (93%; 89-96) participants in the bOPV only group had a type 1 response; and 216 (88%; 83-91) participants in the nOPV2 plus bOPV group and 212 (86%; 81-90) participants in the bOPV only group had a type 3 response. Co-administration was non-inferior to single administration for types 1 and 3, but not for type 2. There were 15 serious adverse events (including three deaths, one in each group, all attributable to sudden infant death syndrome); none were attributed to vaccination. INTERPRETATION: Co-administration of nOPV2 and bOPV interfered with immunogenicity for poliovirus type 2, but not for types 1 and 3. The blunted nOPV2 immunogenicity we observed would be a major drawback of using co-administration as a vaccination strategy. FUNDING: The US Centers for Disease Control and Prevention.


Assuntos
Poliomielite , Poliovirus , Lactente , Humanos , Vacina Antipólio Oral , Poliomielite/epidemiologia , Vacina Antipólio de Vírus Inativado , Bangladesh/epidemiologia , Esquemas de Imunização , Imunogenicidade da Vacina , Anticorpos Antivirais
4.
Nature ; 617(7961): 574-580, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36996871

RESUMO

As of August 2022, clusters of acute severe hepatitis of unknown aetiology in children have been reported from 35 countries, including the USA1,2. Previous studies have found human adenoviruses (HAdVs) in the blood from patients in Europe and the USA3-7, although it is unclear whether this virus is causative. Here we used PCR testing, viral enrichment-based sequencing and agnostic metagenomic sequencing to analyse samples from 16 HAdV-positive cases from 1 October 2021 to 22 May 2022, in parallel with 113 controls. In blood from 14 cases, adeno-associated virus type 2 (AAV2) sequences were detected in 93% (13 of 14), compared to 4 (3.5%) of 113 controls (P < 0.001) and to 0 of 30 patients with hepatitis of defined aetiology (P < 0.001). In controls, HAdV type 41 was detected in blood from 9 (39.1%) of the 23 patients with acute gastroenteritis (without hepatitis), including 8 of 9 patients with positive stool HAdV testing, but co-infection with AAV2 was observed in only 3 (13.0%) of these 23 patients versus 93% of cases (P < 0.001). Co-infections by Epstein-Barr virus, human herpesvirus 6 and/or enterovirus A71 were also detected in 12 (85.7%) of 14 cases, with higher herpesvirus detection in cases versus controls (P < 0.001). Our findings suggest that the severity of the disease is related to co-infections involving AAV2 and one or more helper viruses.


Assuntos
Infecções por Adenovirus Humanos , Coinfecção , Dependovirus , Hepatite , Criança , Humanos , Doença Aguda , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/virologia , Coinfecção/epidemiologia , Coinfecção/virologia , Dependovirus/genética , Dependovirus/isolamento & purificação , Infecções por Vírus Epstein-Barr/epidemiologia , Infecções por Vírus Epstein-Barr/virologia , Hepatite/epidemiologia , Hepatite/virologia , Herpesvirus Humano 4/isolamento & purificação , Herpesvirus Humano 6/isolamento & purificação , Enterovirus Humano A/isolamento & purificação , Vírus Auxiliares/isolamento & purificação
5.
Lancet Microbe ; 3(12): e912-e921, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332645

RESUMO

BACKGROUND: Sabin strains used in oral poliovirus vaccines (OPV) can revert to virulence and, in rare instances, cause disease or generate vaccine-derived strains leading to outbreaks in areas of low immunisation coverage. A novel OPV2 (nOPV2) was designed to stabilise the viral genome against reversion and reduce recombination events that might lead to virulent strains. In this study, we evaluated the genetic and phenotypic stability of shed poliovirus following administration of one dose of monovalent OPV2 (mOPV2) or nOPV2 to infants aged 18-22 weeks. METHODS: In two similarly designed clinical trials (NCT02521974 and NCT03554798) conducted in Panama, infants aged 18-22-weeks, after immunisation with three doses of bivalent OPV (types 1 and 3) and one dose of inactivated poliovirus vaccine, were administered one or two doses of mOPV2 or nOPV2. In this analysis of two clinical trials, faecally shed polioviruses following one dose of mOPV2 or nOPV2 were isolated from stools meeting predetermined criteria related to sample timing and viral presence and quantity and assessed for nucleotide polymorphisms using next-generation sequencing. A transgenic mouse neurovirulence test was adapted to assess the effect of the possible phenotypic reversion of shed mOPV2 and nOPV2 with a logistic regression model. FINDINGS: Of the 91 eligible samples, 86 were able to be sequenced, with 72 evaluated in the transgenic mouse assay. Sabin-2 poliovirus reverts rapidly at nucleotide 481, the primary attenuation site in domain V of the 5' untranslated region of the genome. There was no evidence of neurovirulence-increasing polymorphisms in domain V of shed nOPV2. Reversion of shed Sabin-2 virus corresponded with unadjusted paralysis rates of 47·6% at the 4 log10 50% cell culture infectious dose (CCID50) and 76·7% at the 5 log10 CCID50 inoculum levels, with rates of 2·8% for 4 log10 CCID50 and 11·8% for 5 log10 CCID50 observed for shed nOPV2 samples. The estimated adjusted odds ratio at 4·5 log10 of 0·007 (95% CI 0·002-0·023; p<0·0001) indicates significantly reduced odds of mouse paralysis from virus obtained from nOPV2 recipients compared with mOPV2 recipients. INTERPRETATION: The data indicate increased genetic stability of domain V of nOPV2 relative to mOPV2, with significantly lower neurovirulence of shed nOPV2 virus compared with shed mOPV2. While this vaccine is currently being deployed under an emergency use listing, the data on the genetic stability of nOPV2 will support further regulatory and policy decision-making regarding use of nOPV2 in outbreak responses. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Poliomielite , Poliovirus , Camundongos , Animais , Poliovirus/genética , Poliomielite/prevenção & controle , Vacina Antipólio Oral , Regiões 5' não Traduzidas , Camundongos Transgênicos , Paralisia , Nucleotídeos
6.
MMWR Morb Mortal Wkly Rep ; 71(44): 1418-1424, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36327157

RESUMO

In July 2022, a case of paralytic poliomyelitis resulting from infection with vaccine-derived poliovirus (VDPV) type 2 (VDPV2)§ was confirmed in an unvaccinated adult resident of Rockland County, New York (1). As of August 10, 2022, poliovirus type 2 (PV2)¶ genetically linked to this VDPV2 had been detected in wastewater** in Rockland County and neighboring Orange County (1). This report describes the results of additional poliovirus testing of wastewater samples collected during March 9-October 11, 2022, and tested as of October 20, 2022, from 48 sewersheds (the community area served by a wastewater collection system) serving parts of Rockland County and 12 surrounding counties. Among 1,076 wastewater samples collected, 89 (8.3%) from 10 sewersheds tested positive for PV2. As part of a broad epidemiologic investigation, wastewater testing can provide information about where poliovirus might be circulating in a community in which a paralytic case has been identified; however, the most important public health actions for preventing paralytic poliomyelitis in the United States remain ongoing case detection through national acute flaccid myelitis (AFM) surveillance†† and improving vaccination coverage in undervaccinated communities. Although most persons in the United States are sufficiently immunized, unvaccinated or undervaccinated persons living or working in Kings, Orange, Queens, Rockland, or Sullivan counties, New York should complete the polio vaccination series as soon as possible.


Assuntos
Poliomielite , Vacina Antipólio Oral , Poliovirus , Adulto , Humanos , New York/epidemiologia , Poliomielite/diagnóstico , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Poliovirus/genética , Vacina Antipólio Oral/efeitos adversos , Estados Unidos , Águas Residuárias
8.
MMWR Morb Mortal Wkly Rep ; 71(33): 1065-1068, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35980868

RESUMO

On July 18, 2022, the New York State Department of Health (NYSDOH) notified CDC of detection of poliovirus type 2 in stool specimens from an unvaccinated immunocompetent young adult from Rockland County, New York, who was experiencing acute flaccid weakness. The patient initially experienced fever, neck stiffness, gastrointestinal symptoms, and limb weakness. The patient was hospitalized with possible acute flaccid myelitis (AFM). Vaccine-derived poliovirus type 2 (VDPV2) was detected in stool specimens obtained on days 11 and 12 after initial symptom onset. To date, related Sabin-like type 2 polioviruses have been detected in wastewater* in the patient's county of residence and in neighboring Orange County up to 25 days before (from samples originally collected for SARS-CoV-2 wastewater monitoring) and 41 days after the patient's symptom onset. The last U.S. case of polio caused by wild poliovirus occurred in 1979, and the World Health Organization Region of the Americas was declared polio-free in 1994. This report describes the second identification of community transmission of poliovirus in the United States since 1979; the previous instance, in 2005, was a type 1 VDPV (1). The occurrence of this case, combined with the identification of poliovirus in wastewater in neighboring Orange County, underscores the importance of maintaining high vaccination coverage to prevent paralytic polio in persons of all ages.


Assuntos
COVID-19 , Poliomielite , Vacina Antipólio Oral , Poliovirus , Humanos , New York/epidemiologia , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Vacina Antipólio Oral/efeitos adversos , Saúde Pública , SARS-CoV-2 , Águas Residuárias
9.
J Virol Methods ; 308: 114590, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35878654

RESUMO

Virus neutralization assays, widely used to detect and quantify antibodies induced by virus infection, are considered the gold standard for enterovirus serology testing. Conventional microneutralization assays have been used to assess enterovirus D68 (EV-D68) seroprevalence. While manual or automated 96-well assays are valuable, higher-density assays that increase throughput provide the opportunity to more efficiently screen large, population-based serology collections, as well as to test sample sets against multiple virus strains on the same plate or within the same run. Here, automation was implemented for bulk reagent dispensing, serial dilutions, and luminescence measurement to develop a 384-well enterovirus microneutralization assay that increases overall testing throughput, maintains the reproducibility of the standard 96-well assay, and reduces sample volume usage. EV-D68 strains Fermon, 14-18953, and 18-23087 were used to evaluate the automated 384-well microneutralization assay and compare to the conventional 96-well assay. Sensitivity and specificity were evaluated using pooled human sera and positive and negative control antisera. The Lower Limit of quantitation (LLOQ) was the same as for the 96-well assay and coefficients of variations (CV) of 7.35 %, 5.97 %, and 2.85 % for the three EV-D68 strains respectively, were well below the typical goal of ≤ 20 % CV for accuracy. Z-factor analysis yielded results of 0.694, 0.638, and 0.852, for the three EV-D68 strains respectively, indicating a high level of precision, reliability, and robustness. Intra-assay (7.25 %) and inter-assay (7.12 %) variability were well below 20 % CV. Moreover, the 96-well and 384-well versions of the assay were highly concordant, with a 0.955 correlation coefficient in titers obtained for 50 sera tested. Validation of this automated 384-well microneutralization will support its use in large serology screens assessing the presence of EV-D68 neutralizing antibodies in human populations.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Anticorpos Neutralizantes/análise , Humanos , Reprodutibilidade dos Testes , Estudos Soroepidemiológicos
10.
MMWR Morb Mortal Wkly Rep ; 71(24): 786-790, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709073

RESUMO

The emergence and international spread of neurovirulent circulating vaccine-derived polioviruses (cVDPVs) across multiple countries in Africa and Asia in recent years pose a major challenge to the goal of eradicating all forms of polioviruses. Approximately 90% of all cVDPV outbreaks are caused by the type 2 strain of the Sabin vaccine, an oral live, attenuated vaccine; cVDPV outbreaks typically occur in areas of persistently low immunization coverage (1). A novel type 2 oral poliovirus vaccine (nOPV2), produced by genetic modification of the type 2 Sabin vaccine virus genome (2), was developed and evaluated through phase I and phase II clinical trials during 2017-2019. nOPV2 was demonstrated to be safe and well-tolerated, have noninferior immunogenicity, and have superior genetic stability compared with Sabin monovalent type 2 (as measured by preservation of the primary attenuation site [domain V in the 5' noncoding region] and significantly lower neurovirulence of fecally shed vaccine virus in transgenic mice) (3-5). These findings indicate that nOPV2 could be an important tool in reducing the risk for generating vaccine-derived polioviruses (VDPVs) and the risk for vaccine-associated paralytic poliomyelitis cases. Based on the favorable preclinical and clinical data, and the public health emergency of international concern generated by ongoing endemic wild poliovirus transmission and cVDPV type 2 outbreaks, the World Health Organization authorized nOPV2 for use under the Emergency Use Listing (EUL) pathway in November 2020, allowing for its first use for outbreak response in March 2021 (6). As required by the EUL process, among other EUL obligations, an extensive plan was developed and deployed for obtaining and monitoring nOPV2 isolates detected during acute flaccid paralysis (AFP) surveillance, environmental surveillance, adverse events after immunization surveillance, and targeted surveillance for adverse events of special interest (i.e., prespecified events that have the potential to be causally associated with the vaccine product), during outbreak response, as well as through planned field studies. Under this monitoring framework, data generated from whole-genome sequencing of nOPV2 isolates, alongside other virologic data for isolates from AFP and environmental surveillance systems, are reviewed by the genetic characterization subgroup of an nOPV working group of the Global Polio Eradication Initiative. Global nOPV2 genomic surveillance during March-October 2021 confirmed genetic stability of the primary attenuating site. Sequence data generated through this unprecedented global effort confirm the genetic stability of nOPV2 relative to Sabin 2 and suggest that nOPV2 will be an important tool in the eradication of poliomyelitis. nOPV2 surveillance should continue for the duration of the EUL.


Assuntos
Poliomielite , Vacina Antipólio Oral , Poliovirus , Animais , Viroses do Sistema Nervoso Central/prevenção & controle , Surtos de Doenças/prevenção & controle , Humanos , Camundongos , Mielite/prevenção & controle , Doenças Neuromusculares/prevenção & controle , Poliomielite/epidemiologia , Poliomielite/etiologia , Poliomielite/prevenção & controle , Poliovirus/genética , Vacina Antipólio Oral/efeitos adversos , Vacina Antipólio Oral/genética , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética
11.
MMWR Morb Mortal Wkly Rep ; 71(17): 592-596, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35482557

RESUMO

On August 29, 2021, the United States government oversaw the emergent establishment of Operation Allies Welcome (OAW), led by the U.S. Department of Homeland Security (DHS) and implemented by the U.S. Department of Defense (DoD) and U.S. Department of State (DoS), to safely resettle U.S. citizens and Afghan nationals from Afghanistan to the United States. Evacuees were temporarily housed at several overseas locations in Europe and Asia* before being transported via military and charter flights through two U.S. international airports, and onward to eight U.S. military bases,† with hotel A used for isolation and quarantine of persons with or exposed to certain infectious diseases.§ On August 30, CDC issued an Epi-X notice encouraging public health officials to maintain vigilance for measles among Afghan evacuees because of an ongoing measles outbreak in Afghanistan (25,988 clinical cases reported nationwide during January-November 2021) (1) and low routine measles vaccination coverage (66% and 43% for the first and second doses, respectively, in 2020) (2).


Assuntos
Doenças Transmissíveis , Sarampo , Doenças Transmissíveis/epidemiologia , Surtos de Doenças/prevenção & controle , Humanos , Sarampo/epidemiologia , Sarampo/prevenção & controle , Saúde Pública , Estados Unidos/epidemiologia , Vacinação
12.
Microbiol Spectr ; 10(2): e0256421, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35234489

RESUMO

Next-generation sequencing (NGS) is a powerful tool for detecting and investigating viral pathogens; however, analysis and management of the enormous amounts of data generated from these technologies remains a challenge. Here, we present VPipe (the Viral NGS Analysis Pipeline and Data Management System), an automated bioinformatics pipeline optimized for whole-genome assembly of viral sequences and identification of diverse species. VPipe automates the data quality control, assembly, and contig identification steps typically performed when analyzing NGS data. Users access the pipeline through a secure web-based portal, which provides an easy-to-use interface with advanced search capabilities for reviewing results. In addition, VPipe provides a centralized system for storing and analyzing NGS data, eliminating common bottlenecks in bioinformatics analyses for public health laboratories with limited on-site computational infrastructure. The performance of VPipe was validated through the analysis of publicly available NGS data sets for viral pathogens, generating high-quality assemblies for 12 data sets. VPipe also generated assemblies with greater contiguity than similar pipelines for 41 human respiratory syncytial virus isolates and 23 SARS-CoV-2 specimens. IMPORTANCE Computational infrastructure and bioinformatics analysis are bottlenecks in the application of NGS to viral pathogens. As of September 2021, VPipe has been used by the U.S. Centers for Disease Control and Prevention (CDC) and 12 state public health laboratories to characterize >17,500 and 1,500 clinical specimens and isolates, respectively. VPipe automates genome assembly for a wide range of viruses, including high-consequence pathogens such as SARS-CoV-2. Such automated functionality expedites public health responses to viral outbreaks and pathogen surveillance.


Assuntos
COVID-19 , Vírus , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , SARS-CoV-2/genética , Vírus/genética
13.
MMWR Morb Mortal Wkly Rep ; 71(6): 206-211, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143464

RESUMO

Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.† The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , Centers for Disease Control and Prevention, U.S. , Genômica , Humanos , Prevalência , Vigilância em Saúde Pública/métodos , Estados Unidos/epidemiologia
14.
Lancet Glob Health ; 10(2): e257-e268, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34951974

RESUMO

BACKGROUND: A rapid increase in circulating vaccine-derived poliovirus type 2 outbreaks, and the need to reserve inactivated poliovirus vaccine (IPV) for routine immunisation, has increased the value of fractional dose IPV (fIPV) as a measure to prevent acute flaccid paralysis. However, the intradermal route of administration has been viewed as prohibitive to outbreak response campaigns. We aimed to establish the immunogenicity and safety of administering intradermal fIPV with a disposable syringe jet injector (DSJI) or an intradermal adaptor (IDA) compared with standard administration with a BCG needle and syringe (N&S). METHODS: This pragmatic, non-inferiority trial was undertaken in a campaign setting in communities in The Gambia. Children aged 4-59 months without contraindication to vaccination were eligible. Children were not individually randomly assigned; instead, the vaccination teams were randomly assigned (1:1:1) to one of three administration methods. Parents and the field team were not masked, but laboratory personnel were masked. Baseline demographic and anthropometric data were collected from the participants. Public health officers experienced at intradermal immunisation, and nurses without experience, had 2 h of training on each of the administration methods before the campaign. Participants were vaccinated using the administration method in use by the vaccination team in their community. Poliovirus serum neutralising antibodies (SNA) were measured in children aged 24-59 months before and 4 weeks after vaccination. Adverse events and data on injection quality were collected from all participants. The primary outcome was the type 2 immune response rate (seroconversion in seronegative [SNA titre <8] children plus a 4-fold titre rise in seropositive children). Adjusted differences in the immune response between the DSJI or IDA group versus the N&S group were calculated with 97·5% CIs. A margin of -10% was used to define the non-inferiority of DSJI or IDA compared to N&S. Immunogenicity analysis was done per protocol. The trial is registered with ClinicalTrials.govNCT02967783 and has been completed. FINDINGS: Between Oct 28 and Dec 29, 2016, 3189 children aged 4-59 months were recruited, of whom 3170 were eligible. Over 3 days, 2720 children were vaccinated (N&S, 917; IDA, 874; and DSJI, 929). Among 992 children aged 25-59 months with a baseline SNA available, 90·1% (95% CI 86·1-92·9; 281/312) of those vaccinated using the DSJI had an immune response to type 2 compared with 93·8% (90·6-95·8; 331/353) of those vaccinated with N&S and 96·6% (94·0-98·0; 316/327) of those vaccinated with IDA. All (53/53) type 2 seronegative children seroconverted. For polio type 2, non-inferiority was shown for both the IDA (adjusted difference 0·7% [97·5% CI -3·3 to 4·7], unadjusted difference 2·9% [-0·9 to 6·8]) and DSJI (adjusted difference -3·3% [-8·3 to 1·5], unadjusted difference -3·7% [-8·7 to 1·1]) compared with N&S. Non-inferiority was shown for type 1 and 3 for the IDA and DSJI. Neither injection quality nor the training and experience of the vaccinators had an effect on immune response. No safety concerns were reported. INTERPRETATION: In a campaign, intradermal fIPV is safe and generates consistent immune responses that are not dependent on vaccinator experience or injection quality when administered using an N&S, DSJI, or IDA. Countries facing vaccine-derived poliovirus type 2 outbreaks should consider fIPV campaigns to boost population immunity and prevent cases of acute flaccid paralysis. FUNDING: World Health Organization and the Medical Research Council.


Assuntos
Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado/administração & dosagem , Vacina Antipólio de Vírus Inativado/imunologia , Pré-Escolar , Relação Dose-Resposta a Droga , Estudos de Equivalência como Asunto , Feminino , Gâmbia , Humanos , Lactente , Injeções Intradérmicas , Masculino
15.
J Infect Dis ; 226(2): 292-298, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-33180924

RESUMO

BACKGROUND: The monovalent type 2 oral poliovirus vaccine (mOPV2) stockpile is low. One potential strategy to stretch the existing mOPV2 supply is to administer a reduced dose: 1 drop instead of 2. METHODS: We conducted a randomized, controlled, open-label, noninferiority trial (10% margin) to compared immunogenicity after administration of 1 versus 2 drops of mOPV2. We enrolled 9-22-month-old infants from Mocuba district of Mozambique. Poliovirus neutralizing antibodies were measured in serum samples collected before and 1 month after mOPV2 administration. Immune response was defined as seroconversion from seronegative (<1:8) at baseline to seropositive (≥1:8) after vaccination or boosting titers by ≥4-fold for those with titers between 1:8 and 1:362 at baseline. The trial was registered at anzctr.org.au (no. ACTRN12619000184178p). RESULTS: We enrolled 378 children, and 262 (69%) completed per-protocol requirements. The immune response of mOPV2 was 53.6% (95% confidence interval, 44.9%-62.1%) and 60.6% (52.2%-68.4%) in 1-drop and 2-drop recipients, respectively. The noninferiority margin of the 10% was not reached (difference, 7.0%; 95% confidence interval, -5.0% to 19.0%). CONCLUSION: A small loss of immunogenicity of reduced mOPV2 was observed. Although the noninferiority target was not achieved, the Strategic Advisory Group of Experts on Immunization recommended the 1-drop strategy as a dose-sparing measure if mOPV2 supplies deteriorate further.


Assuntos
Poliomielite , Poliovirus , Anticorpos Antivirais , Criança , Humanos , Esquemas de Imunização , Imunogenicidade da Vacina , Lactente , Moçambique , Vacina Antipólio de Vírus Inativado , Vacina Antipólio Oral
16.
J Infect Dis ; 226(5): 852-861, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34610135

RESUMO

BACKGROUND: Primary intestinal immunity through viral replication of live oral vaccine is key to interrupt poliovirus transmission. We assessed viral fecal shedding from infants administered Sabin monovalent poliovirus type 2 vaccine (mOPV2) or low and high doses of 2 novel OPV2 (nOPV2) vaccine candidates. METHODS: In 2 randomized clinical trials in Panama, a control mOPV2 study (October 2015 to April 2016) and nOPV2 study (September 2018 to October 2019), 18-week-old infants vaccinated with bivalent oral poliovirus vaccine/inactivated poliovirus vaccine received 1 or 2 study vaccinations 28 days apart. Stools were assessed for poliovirus RNA by polymerase chain reaction (PCR) and live virus by culture for 28 days postvaccination. RESULTS: Shedding data were available from 621 initially reverse-transcription PCR-negative infants (91 mOPV2, 265 nOPV2-c1, 265 nOPV2-c2 recipients). Seven days after dose 1, 64.3% of mOPV2 recipients and 31.3%-48.5% of nOPV2 recipients across groups shed infectious type 2 virus. Respective rates 7 days after dose 2 decreased to 33.3% and 12.9%-22.7%, showing induction of intestinal immunity. Shedding of both nOPV2 candidates ceased at similar or faster rates than mOPV2. CONCLUSIONS: Viral shedding of either nOPV candidate was similar or decreased relative to mOPV2, and all vaccines showed indications that the vaccine virus was replicating sufficiently to induce primary intestinal mucosal immunity.


Assuntos
Poliomielite , Poliovirus , Anticorpos Antivirais , Humanos , Lactente , Vacina Antipólio de Vírus Inativado , Vacina Antipólio Oral , Ensaios Clínicos Controlados Aleatórios como Assunto , Vacinas Atenuadas
17.
PLoS One ; 16(12): e0260487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34910739

RESUMO

At the start of the COVID-19 pandemic, the Centers for Disease Control and Prevention (CDC) designed, manufactured, and distributed the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel for SARS-CoV-2 detection. The diagnostic panel targeted three viral nucleocapsid gene loci (N1, N2, and N3 primers and probes) to maximize sensitivity and to provide redundancy for virus detection if mutations occurred. After the first distribution of the diagnostic panel, state public health laboratories reported fluorescent signal in the absence of viral template (false-positive reactivity) for the N3 component and to a lesser extent for N1. This report describes the findings of an internal investigation conducted by the CDC to identify the cause(s) of the N1 and N3 false-positive reactivity. For N1, results demonstrate that contamination with a synthetic template, that occurred while the "bulk" manufactured materials were located in a research lab for quality assessment, was the cause of false reactivity in the first lot. Base pairing between the 3' end of the N3 probe and the 3' end of the N3 reverse primer led to amplification of duplex and larger molecules resulting in false reactivity in the N3 assay component. We conclude that flaws in both assay design and handling of the "bulk" material, caused the problems with the first lot of the 2019-nCoV Real-Time RT-PCR Diagnostic Panel. In addition, within this study, we found that the age of the examined diagnostic panel reagents increases the frequency of false positive results for N3. We discuss these findings in the context of improvements to quality control, quality assurance, and assay validation practices that have since been improved at the CDC.


Assuntos
COVID-19 , Primers do DNA , Reações Falso-Positivas , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2
18.
Vaccine ; 39(40): 5814-5821, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34481702

RESUMO

BACKGROUND: After global oral poliovirus vaccine (OPV) cessation, the Strategic Advisory Group of Experts on Immunization (SAGE) currently recommends a two-dose schedule of inactivated poliovirus vaccine (IPV) beginning ≥14-weeks of age to achieve at least 90% immune response. We aimed to compare the immunogenicity of three different two-dose IPV schedules started before or at 14-weeks of age. METHODS: We conducted a randomized, controlled, open-label, inequality trial at two sites in Dhaka, Bangladesh. Healthy infants at 6-weeks of age were randomized into one of five arms to receive two-dose IPV schedules at different ages with and without OPV. The three IPV-only arms are presented: Arm C received IPV at 14-weeks and 9-months; Arm D received IPV at 6-weeks and 9-months; and Arm E received IPV at 6 and 14-weeks. The primary outcome was immune response defined as seroconversion from seronegative (<1:8) to seropositive (≥1:8) after vaccination, or a four-fold rise in antibody titers and median reciprocal antibody titers to all three poliovirus types measured at 10-months of age. FINDINGS: Of the 987 children randomized to Arms C, D, and E, 936 were included in the intention-to-treat analysis. At 10-months, participants in Arm C (IPV at 14-weeks and 9-months) had ≥99% cumulative immune response to all three poliovirus types which was significantly higher than the 77-81% observed in Arm E (IPV at 6 and 14-weeks). Participants in Arm D (IPV at 6-weeks and 9-months) had cumulative immune responses of 98-99% which was significantly higher than that of Arm E (p value < 0.0001) but not different from Arm C. INTERPRETATION: Results support current SAGE recommendations for IPV following OPV cessation and provide evidence that the schedule of two full IPV doses could begin as early as 6-weeks.


Assuntos
Poliomielite , Vacina Antipólio Oral , Anticorpos Antivirais , Bangladesh , Criança , Humanos , Lactente , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado
20.
Viruses ; 13(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34372561

RESUMO

Environmental surveillance was recommended for risk mitigation in a novel oral polio vaccine-2 (nOPV2) clinical trial (M5-ABMG) to monitor excretion, potential circulation, and loss of attenuation of the two nOPV2 candidates. The nOPV2 candidates were developed to address the risk of poliovirus (PV) type 2 circulating vaccine-derived poliovirus (cVDPV) as part of the global eradication strategy. Between November 2018 and January 2020, an environmental surveillance study for the clinical trial was conducted in parallel to the M5-ABMG clinical trial at five locations in Panama. The collection sites were located upstream from local treatment plant inlets, to capture the excreta from trial participants and their community. Laboratory analyses of 49 environmental samples were conducted using the two-phase separation method. Novel OPV2 strains were not detected in sewage samples collected during the study period. However, six samples were positive for Sabin-like type 3 PV, two samples were positive for Sabin-like type 1 PV, and non-polio enteroviruses NPEVs were detected in 27 samples. One of the nOPV2 candidates has been granted Emergency Use Listing by the World Health Organization and initial use started in March 2021. This environmental surveillance study provided valuable risk mitigation information to support the Emergency Use Listing application.


Assuntos
Monitoramento Ambiental/métodos , Poliomielite/prevenção & controle , Poliovirus/imunologia , Humanos , Panamá/epidemiologia , Poliomielite/virologia , Poliovirus/patogenicidade , Vacina Antipólio Oral/análise , Medição de Risco/métodos , Esgotos/virologia , Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...